Train a simple deep CNN on the CIFAR10 small images dataset using augmentation.
Using TensorFlow internal augmentation APIs by replacing ImageGenerator with an embedded AugmentLayer using LambdaLayer, which is faster on GPU.
Benchmark of ImageGenerator
(IG) vs AugmentLayer
(AL) both using augmentation
2D:
(backend = Tensorflow-GPU, Nvidia Tesla P100-SXM2)
Epoch no. | IG %Accuracy | IG Performance | AL %Accuracy | AL Performance |
---|---|---|---|---|
1 | 44.84 | 15 ms/step | 45.54 | 358 us/step |
2 | 52.34 | 8 ms/step | 50.55 | 285 us/step |
8 | 65.45 | 8 ms/step | 65.59 | 281 us/step |
25 | 76.74 | 8 ms/step | 76.17 | 280 us/step |
100 | 78.81 | 8 ms/step | 78.70 | 285 us/step |
Settings: horizontal_flip = True
Epoch no. | IG %Accuracy | IG Performance | AL %Accuracy | AL Performance |
---|---|---|---|---|
1 | 43.46 | 15 ms/step | 42.21 | 334 us/step |
2 | 48.95 | 11 ms/step | 48.06 | 282 us/step |
8 | 63.59 | 11 ms/step | 61.35 | 290 us/step |
25 | 72.25 | 12 ms/step | 71.08 | 287 us/step |
100 | 76.35 | 11 ms/step | 74.62 | 286 us/step |
Settings: rotation = 30.0
(Corner process and rotation precision by ImageGenerator
and AugmentLayer
are slightly different.)
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, Lambda, MaxPooling2D
from keras import backend as K
import os
if K.backend() != 'tensorflow':
raise RuntimeError('This example can only run with the '
'TensorFlow backend, '
'because it requires TF-native augmentation APIs')
import tensorflow as tf
def augment_2d(inputs, rotation=0, horizontal_flip=False, vertical_flip=False):
"""Apply additive augmentation on 2D data.
# Arguments
rotation: A float, the degree range for rotation (0 <= rotation < 180),
e.g. 3 for random image rotation between (-3.0, 3.0).
horizontal_flip: A boolean, whether to allow random horizontal flip,
e.g. true for 50% possibility to flip image horizontally.
vertical_flip: A boolean, whether to allow random vertical flip,
e.g. true for 50% possibility to flip image vertically.
# Returns
input data after augmentation, whose shape is the same as its original.
"""
if inputs.dtype != tf.float32:
inputs = tf.image.convert_image_dtype(inputs, dtype=tf.float32)
with tf.name_scope('augmentation'):
shp = tf.shape(inputs)
batch_size, height, width = shp[0], shp[1], shp[2]
width = tf.cast(width, tf.float32)
height = tf.cast(height, tf.float32)
transforms = []
identity = tf.constant([1, 0, 0, 0, 1, 0, 0, 0], dtype=tf.float32)
if rotation > 0:
angle_rad = rotation * 3.141592653589793 / 180.0
angles = tf.random_uniform([batch_size], -angle_rad, angle_rad)
f = tf.contrib.image.angles_to_projective_transforms(angles,
height, width)
transforms.append(f)
if horizontal_flip:
coin = tf.less(tf.random_uniform([batch_size], 0, 1.0), 0.5)
shape = [-1., 0., width, 0., 1., 0., 0., 0.]
flip_transform = tf.convert_to_tensor(shape, dtype=tf.float32)
flip = tf.tile(tf.expand_dims(flip_transform, 0), [batch_size, 1])
noflip = tf.tile(tf.expand_dims(identity, 0), [batch_size, 1])
transforms.append(tf.where(coin, flip, noflip))
if vertical_flip:
coin = tf.less(tf.random_uniform([batch_size], 0, 1.0), 0.5)
shape = [1., 0., 0., 0., -1., height, 0., 0.]
flip_transform = tf.convert_to_tensor(shape, dtype=tf.float32)
flip = tf.tile(tf.expand_dims(flip_transform, 0), [batch_size, 1])
noflip = tf.tile(tf.expand_dims(identity, 0), [batch_size, 1])
transforms.append(tf.where(coin, flip, noflip))
if transforms:
f = tf.contrib.image.compose_transforms(*transforms)
inputs = tf.contrib.image.transform(inputs, f, interpolation='BILINEAR')
return inputs
batch_size = 32
num_classes = 10
epochs = 100
num_predictions = 20
save_dir = '/tmp/saved_models'
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Lambda(augment_2d,
input_shape=x_train.shape[1:],
arguments={'rotation': 8.0, 'horizontal_flip': True}))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])