开始使用 Keras 函数式 API

Keras 函数式 API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。

这部分文档假设你已经对 Sequential 顺序模型比较熟悉。

让我们先从一些简单的例子开始。


例一:全连接网络

Sequential 模型可能是实现这种网络的一个更好选择,但这个例子能够帮助我们进行一些简单的理解。

  • 网络层的实例是可调用的,它以张量为参数,并且返回一个张量
  • 输入和输出均为张量,它们都可以用来定义一个模型(Model
  • 这样的模型同 Keras 的 Sequential 模型一样,都可以被训练
from keras.layers import Input, Dense
from keras.models import Model

# 这部分返回一个张量
inputs = Input(shape=(784,))

# 层的实例是可调用的,它以张量为参数,并且返回一个张量
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 这部分创建了一个包含输入层和三个全连接层的模型
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(data, labels)  # 开始训练

所有的模型都可调用,就像网络层一样

利用函数式 API,可以轻易地重用训练好的模型:可以将任何模型看作是一个层,然后通过传递一个张量来调用它。注意,在调用模型时,您不仅重用模型的结构,还重用了它的权重。

x = Input(shape=(784,))
# 这是可行的,并且返回上面定义的 10-way softmax。
y = model(x)

这种方式能允许我们快速创建可以处理序列输入的模型。只需一行代码,你就将图像分类模型转换为视频分类模型。

from keras.layers import TimeDistributed

# 输入张量是 20 个时间步的序列,
# 每一个时间为一个 784 维的向量
input_sequences = Input(shape=(20, 784))

# 这部分将我们之前定义的模型应用于输入序列中的每个时间步。
# 之前定义的模型的输出是一个 10-way softmax,
# 因而下面的层的输出将是维度为 10 的 20 个向量的序列。
processed_sequences = TimeDistributed(model)(input_sequences)

多输入多输出模型

以下是函数式 API 的一个很好的例子:具有多个输入和输出的模型。函数式 API 使处理大量交织的数据流变得容易。

来考虑下面的模型。我们试图预测 Twitter 上的一条新闻标题有多少转发和点赞数。模型的主要输入将是新闻标题本身,即一系列词语,但是为了增添趣味,我们的模型还添加了其他的辅助输入来接收额外的数据,例如新闻标题的发布的时间等。 该模型也将通过两个损失函数进行监督学习。较早地在模型中使用主损失函数,是深度学习模型的一个良好正则方法。

模型结构如下图所示:

multi-input-multi-output-graph

让我们用函数式 API 来实现它。

主要输入接收新闻标题本身,即一个整数序列(每个整数编码一个词)。 这些整数在 1 到 10,000 之间(10,000 个词的词汇表),且序列长度为 100 个词。

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model

# 标题输入:接收一个含有 100 个整数的序列,每个整数在 1 到 10000 之间。
# 注意我们可以通过传递一个 "name" 参数来命名任何层。
main_input = Input(shape=(100,), dtype='int32', name='main_input')

# Embedding 层将输入序列编码为一个稠密向量的序列,
# 每个向量维度为 512。
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)

# LSTM 层把向量序列转换成单个向量,
# 它包含整个序列的上下文信息
lstm_out = LSTM(32)(x)

在这里,我们插入辅助损失,使得即使在模型主损失很高的情况下,LSTM 层和 Embedding 层都能被平稳地训练。

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

此时,我们将辅助输入数据与 LSTM 层的输出连接起来,输入到模型中:

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])

# 堆叠多个全连接网络层
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)

# 最后添加主要的逻辑回归层
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

然后定义一个具有两个输入和两个输出的模型:

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

现在编译模型,并给辅助损失分配一个 0.2 的权重。如果要为不同的输出指定不同的 loss_weightsloss,可以使用列表或字典。 在这里,我们给 loss 参数传递单个损失函数,这个损失将用于所有的输出。

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
              loss_weights=[1., 0.2])

我们可以通过传递输入数组和目标数组的列表来训练模型:

model.fit([headline_data, additional_data], [labels, labels],
          epochs=50, batch_size=32)

由于输入和输出均被命名了(在定义时传递了一个 name 参数),我们也可以通过以下方式编译模型:

model.compile(optimizer='rmsprop',
              loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
              loss_weights={'main_output': 1., 'aux_output': 0.2})

# 然后使用以下方式训练:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
          {'main_output': labels, 'aux_output': labels},
          epochs=50, batch_size=32)

共享网络层

函数式 API 的另一个用途是使用共享网络层的模型。我们来看看共享层。

来考虑推特推文数据集。我们想要建立一个模型来分辨两条推文是否来自同一个人(例如,通过推文的相似性来对用户进行比较)。

实现这个目标的一种方法是建立一个模型,将两条推文编码成两个向量,连接向量,然后添加逻辑回归层;这将输出两条推文来自同一作者的概率。模型将接收一对对正负表示的推特数据。

由于这个问题是对称的,编码第一条推文的机制应该被完全重用来编码第二条推文(权重及其他全部)。这里我们使用一个共享的 LSTM 层来编码推文。

让我们使用函数式 API 来构建它。首先我们将一条推特转换为一个尺寸为 (280, 256) 的矩阵,即每条推特 280 字符,每个字符为 256 维的 one-hot 编码向量 (取 256 个常用字符)。

import keras
from keras.layers import Input, LSTM, Dense
from keras.models import Model

tweet_a = Input(shape=(280, 256))
tweet_b = Input(shape=(280, 256))

要在不同的输入上共享同一个层,只需实例化该层一次,然后根据需要传入你想要的输入即可:

# 这一层可以输入一个矩阵,并返回一个 64 维的向量
shared_lstm = LSTM(64)

# 当我们重用相同的图层实例多次,图层的权重也会被重用 (它其实就是同一层)
encoded_a = shared_lstm(tweet_a)
encoded_b = shared_lstm(tweet_b)

# 然后再连接两个向量:
merged_vector = keras.layers.concatenate([encoded_a, encoded_b], axis=-1)

# 再在上面添加一个逻辑回归层
predictions = Dense(1, activation='sigmoid')(merged_vector)

# 定义一个连接推特输入和预测的可训练的模型
model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])
model.fit([data_a, data_b], labels, epochs=10)

让我们暂停一会,看看如何读取共享层的输出或输出尺寸。


层「节点」的概念

每当你在某个输入上调用一个层时,都将创建一个新的张量(层的输出),并且为该层添加一个「节点」,将输入张量连接到输出张量。当多次调用同一个图层时,该图层将拥有多个节点索引 (0, 1, 2...)。

在之前版本的 Keras 中,可以通过 layer.get_output() 来获得层实例的输出张量,或者通过 layer.output_shape 来获取其输出形状。现在你依然可以这么做(除了 get_output() 已经被 output 属性替代)。但是如果一个层与多个输入连接呢?

只要一个层仅仅连接到一个输入,就不会有困惑,.output 会返回层的唯一输出:

a = Input(shape=(280, 256))

lstm = LSTM(32)
encoded_a = lstm(a)

assert lstm.output == encoded_a

但是如果该层有多个输入,那就会出现问题:

a = Input(shape=(280, 256))
b = Input(shape=(280, 256))

lstm = LSTM(32)
encoded_a = lstm(a)
encoded_b = lstm(b)

lstm.output
>> AttributeError: Layer lstm_1 has multiple inbound nodes,
hence the notion of "layer output" is ill-defined.
Use `get_output_at(node_index)` instead.

好吧,通过下面的方法可以解决:

assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b

够简单,对吧?

input_shapeoutput_shape 这两个属性也是如此:只要该层只有一个节点,或者只要所有节点具有相同的输入/输出尺寸,那么「层输出/输入尺寸」的概念就被很好地定义,并且将由 layer.output_shape / layer.input_shape 返回。但是比如说,如果将一个 Conv2D 层先应用于尺寸为 (32,32,3) 的输入,再应用于尺寸为 (64, 64, 3) 的输入,那么这个层就会有多个输入/输出尺寸,你将不得不通过指定它们所属节点的索引来获取它们:

a = Input(shape=(32, 32, 3))
b = Input(shape=(64, 64, 3))

conv = Conv2D(16, (3, 3), padding='same')
conved_a = conv(a)

# 到目前为止只有一个输入,以下可行:
assert conv.input_shape == (None, 32, 32, 3)

conved_b = conv(b)
# 现在 `.input_shape` 属性不可行,但是这样可以:
assert conv.get_input_shape_at(0) == (None, 32, 32, 3)
assert conv.get_input_shape_at(1) == (None, 64, 64, 3)

更多的例子

代码示例仍然是起步的最佳方式,所以这里还有更多的例子。

Inception 模型

有关 Inception 结构的更多信息,请参阅 Going Deeper with Convolutions

from keras.layers import Conv2D, MaxPooling2D, Input

input_img = Input(shape=(256, 256, 3))

tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)

tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)

tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)
tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)

output = keras.layers.concatenate([tower_1, tower_2, tower_3], axis=1)

卷积层上的残差连接

有关残差网络 (Residual Network) 的更多信息,请参阅 Deep Residual Learning for Image Recognition

from keras.layers import Conv2D, Input

# 输入张量为 3 通道 256x256 图像
x = Input(shape=(256, 256, 3))
# 3 输出通道(与输入通道相同)的 3x3 卷积核
y = Conv2D(3, (3, 3), padding='same')(x)
# 返回 x + y
z = keras.layers.add([x, y])

共享视觉模型

该模型在两个输入上重复使用同一个图像处理模块,以判断两个 MNIST 数字是否为相同的数字。

from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten
from keras.models import Model

# 首先,定义视觉模型
digit_input = Input(shape=(27, 27, 1))
x = Conv2D(64, (3, 3))(digit_input)
x = Conv2D(64, (3, 3))(x)
x = MaxPooling2D((2, 2))(x)
out = Flatten()(x)

vision_model = Model(digit_input, out)

# 然后,定义区分数字的模型
digit_a = Input(shape=(27, 27, 1))
digit_b = Input(shape=(27, 27, 1))

# 视觉模型将被共享,包括权重和其他所有
out_a = vision_model(digit_a)
out_b = vision_model(digit_b)

concatenated = keras.layers.concatenate([out_a, out_b])
out = Dense(1, activation='sigmoid')(concatenated)

classification_model = Model([digit_a, digit_b], out)

视觉问答模型

当被问及关于图片的自然语言问题时,该模型可以选择正确的单词作答。

它通过将问题和图像编码成向量,然后连接两者,在上面训练一个逻辑回归,来从词汇表中挑选一个可能的单词作答。

from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.layers import Input, LSTM, Embedding, Dense
from keras.models import Model, Sequential

# 首先,让我们用 Sequential 来定义一个视觉模型。
# 这个模型会把一张图像编码为向量。
vision_model = Sequential()
vision_model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(224, 224, 3)))
vision_model.add(Conv2D(64, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
vision_model.add(Conv2D(128, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
vision_model.add(Conv2D(256, (3, 3), activation='relu'))
vision_model.add(Conv2D(256, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Flatten())

# 现在让我们用视觉模型来得到一个输出张量:
image_input = Input(shape=(224, 224, 3))
encoded_image = vision_model(image_input)

# 接下来,定义一个语言模型来将问题编码成一个向量。
# 每个问题最长 100 个词,词的索引从 1 到 9999.
question_input = Input(shape=(100,), dtype='int32')
embedded_question = Embedding(input_dim=10000, output_dim=256, input_length=100)(question_input)
encoded_question = LSTM(256)(embedded_question)

# 连接问题向量和图像向量:
merged = keras.layers.concatenate([encoded_question, encoded_image])

# 然后在上面训练一个 1000 词的逻辑回归模型:
output = Dense(1000, activation='softmax')(merged)

# 最终模型:
vqa_model = Model(inputs=[image_input, question_input], outputs=output)

# 下一步就是在真实数据上训练模型。

视频问答模型

现在我们已经训练了图像问答模型,我们可以很快地将它转换为视频问答模型。在适当的训练下,你可以给它展示一小段视频(例如 100 帧的人体动作),然后问它一个关于这段视频的问题(例如,「这个人在做什么运动?」 -> 「足球」)。

from keras.layers import TimeDistributed

video_input = Input(shape=(100, 224, 224, 3))
# 这是基于之前定义的视觉模型(权重被重用)构建的视频编码
encoded_frame_sequence = TimeDistributed(vision_model)(video_input)  # 输出为向量的序列
encoded_video = LSTM(256)(encoded_frame_sequence)  # 输出为一个向量

# 这是问题编码器的模型级表示,重复使用与之前相同的权重:
question_encoder = Model(inputs=question_input, outputs=encoded_question)

# 让我们用它来编码这个问题:
video_question_input = Input(shape=(100,), dtype='int32')
encoded_video_question = question_encoder(video_question_input)

# 这就是我们的视频问答模式:
merged = keras.layers.concatenate([encoded_video, encoded_video_question])
output = Dense(1000, activation='softmax')(merged)
video_qa_model = Model(inputs=[video_input, video_question_input], outputs=output)