关于 Keras 模型
在 Keras 中有两类主要的模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型。
这些模型有许多共同的方法和属性:
model.layers
是包含模型网络层的展平列表。model.inputs
是模型输入张量的列表。model.outputs
是模型输出张量的列表。model.summary()
打印出模型概述信息。 它是 utils.print_summary 的简捷调用。model.get_config()
返回包含模型配置信息的字典。通过以下代码,就可以根据这些配置信息重新实例化模型:
config = model.get_config()
model = Model.from_config(config)
# 或者,对于 Sequential:
model = Sequential.from_config(config)
model.get_weights()
返回模型中所有权重张量的列表,类型为 Numpy 数组。model.set_weights(weights)
从 Numpy 数组中为模型设置权重。列表中的数组必须与get_weights()
返回的权重具有相同的尺寸。model.to_json()
以 JSON 字符串的形式返回模型的表示。请注意,该表示不包括权重,仅包含结构。你可以通过以下方式从 JSON 字符串重新实例化同一模型(使用重新初始化的权重):
from keras.models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
model.to_yaml()
以 YAML 字符串的形式返回模型的表示。请注意,该表示不包括权重,只包含结构。你可以通过以下代码,从 YAML 字符串中重新实例化相同的模型(使用重新初始化的权重):
from keras.models import model_from_yaml
yaml_string = model.to_yaml()
model = model_from_yaml(yaml_string)
model.save_weights(filepath)
将模型权重存储为 HDF5 文件。model.load_weights(filepath, by_name=False)
: 从 HDF5 文件(由save_weights
创建)中加载权重。默认情况下,模型的结构应该是不变的。 如果想将权重载入不同的模型(部分层相同), 设置by_name=True
来载入那些名字相同的层的权重。
注意:另请参阅如何安装 HDF5 或 h5py 以保存 Keras 模型,在常见问题中了解如何安装 h5py
的说明。
Model 类继承
除了这两类模型之外,你还可以通过继承 Model
类并在 call
方法中实现你自己的前向传播,以创建你自己的完全定制化的模型,(Model
类继承 API 引入于 Keras 2.2.0)。
这里是一个用 Model
类继承写的简单的多层感知器的例子:
import keras
class SimpleMLP(keras.Model):
def __init__(self, use_bn=False, use_dp=False, num_classes=10):
super(SimpleMLP, self).__init__(name='mlp')
self.use_bn = use_bn
self.use_dp = use_dp
self.num_classes = num_classes
self.dense1 = keras.layers.Dense(32, activation='relu')
self.dense2 = keras.layers.Dense(num_classes, activation='softmax')
if self.use_dp:
self.dp = keras.layers.Dropout(0.5)
if self.use_bn:
self.bn = keras.layers.BatchNormalization(axis=-1)
def call(self, inputs):
x = self.dense1(inputs)
if self.use_dp:
x = self.dp(x)
if self.use_bn:
x = self.bn(x)
return self.dense2(x)
model = SimpleMLP()
model.compile(...)
model.fit(...)
网络层定义在 __init__(self, ...)
中,前向传播在 call(self, inputs)
中指定。在 call
中,你可以指定自定义的损失函数,通过调用 self.add_loss(loss_tensor)
(就像你在自定义层中一样)。
在类继承模型中,模型的拓扑结构是由 Python 代码定义的(而不是网络层的静态图)。这意味着该模型的拓扑结构不能被检查或序列化。因此,以下方法和属性不适用于类继承模型:
model.inputs
和model.outputs
。model.to_yaml()
和model.to_json()
。model.get_config()
和model.save()
。
关键点:为每个任务使用正确的 API。Model
类继承 API 可以为实现复杂模型提供更大的灵活性,但它需要付出代价(比如缺失的特性):它更冗长,更复杂,并且有更多的用户错误机会。如果可能的话,尽可能使用函数式 API,这对用户更友好。